Localizing proteins in the cell from their phylogenetic profiles.

نویسندگان

  • E M Marcotte
  • I Xenarios
  • A M van Der Bliek
  • D Eisenberg
چکیده

We introduce a computational method for identifying subcellular locations of proteins from the phylogenetic distribution of the homologs of organellar proteins. This method is based on the observation that proteins localized to a given organelle by experiments tend to share a characteristic phylogenetic distribution of their homologs-a phylogenetic profile. Therefore any other protein can be localized by its phylogenetic profile. Application of this method to mitochondrial proteins reveals that nucleus-encoded proteins previously known to be destined for mitochondria fall into three groups: prokaryote-derived, eukaryote-derived, and organism-specific (i.e., found only in the organism under study). Prokaryote-derived mitochondrial proteins can be identified effectively by their phylogenetic profiles. In the yeast Saccharomyces cerevisiae, 361 nucleus-encoded mitochondrial proteins can be identified at 50% accuracy with 58% coverage. From these values and the proportion of conserved mitochondrial genes, it can be inferred that approximately 630 genes, or 10% of the nuclear genome, is devoted to mitochondrial function. In the worm Caenorhabditis elegans, we estimate that there are approximately 660 nucleus-encoded mitochondrial genes, or 4% of its genome, with approximately 400 of these genes contributed from the prokaryotic mitochondrial ancestor. The large fraction of organism-specific and eukaryote-derived genes suggests that mitochondria perform specialized roles absent from prokaryotic mitochondrial ancestors. We observe measurably distinct phylogenetic profiles among proteins from different subcellular compartments, allowing the general use of prokaryotic genomes in learning features of eukaryotic proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Starvation Stress on the Protein Profiles in Flexibacter chinensis

Background: Analysis of many proteins produced during the transition into the stationary phase and under stress conditions (including starvation stress) demonstrated that a number of novel proteins were induced in common to each stress and could be the reason for cross-protection in bacterial cells. It is necessary to investigate the synthesis of these proteins during different stress condition...

متن کامل

In Silico Characterization of Proteins Containing ARID-PHD Domain and Its Expression in Aeluropus littoralis Halophyte

Abiotic stresses are the most important factors that reduce the yield of crops. In this case, Bioinformatics analysis plays an important role to study genes, and their relatedness as well as prediction their function in response to abiotic stresses. Among all domains, ARID-PHD domain has been identified in plants and animals and has a very significant role in growth regulation, cell cycle, and ...

متن کامل

Distinct Protein Classes in Human Red Cell Proteome Revealed by Similarity of Phylogenetic Profiles

The minimal set of proteins necessary to maintain a vertebrate cell forms an interesting core of cellular machinery. The known proteome of human red blood cell consists of about 1400 proteins. We treated this protein complement of one of the simplest human cells as a model and asked the questions on its function and origins. The proteome was mapped onto phylogenetic profiles, i.e. vectors of sp...

متن کامل

Mesenchymal Stem/Stromal-Like Cells from Diploid and Triploid Human Embryonic Stem Cells Display Different Gene Expression Profiles

Background: Human ESCs-MSCs open a new insight into future cell therapy applications, due to their unique characteristics, including immunomodulatory features, proliferation, and differentiation. Methods: Herein, hESCs-MSCs were characterized by IF technique with CD105 and FIBRONECTIN as markers and FIBRONECTIN, VIMENTIN, CD10, CD105, and CD14 genes using RT-PCR technique. FACS was performed fo...

متن کامل

Molecular and Phylogenetic Analysis and Protein Structural modeling of NS Gene of Human Influenza A Virus Subtype H1N1 Circulating in Iran 2015 & 2017

Abstract Background:   The NS (non-structural) genomic segment of influenza A virus expresses two proteins (NS1 and NS2) which are responsible for the virulence and pathogenicity of virus. In this study we investigate the characterization and variability of the NS gene recovered from H1N1 influenza viruses isolated from Iranian patients during the 2017 seasonal outbreak  and from high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 22  شماره 

صفحات  -

تاریخ انتشار 2000